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Abstract 

The detection of signals in an ideal receiver is considered as a decision between 
quantum-mechanical density operators describing the field in the receiver, 
respectively when thermal radiation alone is present and when besides this 
background there is a signal field present. The detectability of the signal is 
assessed by the minimum probability of error attainable in such a decision. 
Coherent signals of known and unknown phase are treated. The theory is 
shown to reduce to conventional detection theory in the classical limit. 

1. Detection as Measurement  and Decision 

The l imi ta t ions  imposed  b y  the  laws of  na tu re  on the  de tec tab i l i ty  
of  e lec t romagnet ic  signals arc of  bo th  philosophical  and  pract ical  
interest .  To de te rmine  t h e m  one defines an  ideal receiver  of  such a 
signal and  carries out  a t hough t  exper iment .  

The  ideal receiver  is t a k e n  to be a lossless cav i ty  containing t he rma l  
rad ia t ion  of  absolute  t e m p e r a t u r e  T. The  de tec tab i l i ty  of  a signal can 
be assessed b y  imagining a large n u m b e r  of  r a n d o m  trials,  in a f rac t ion  
( 1  - ~) of  which the  receiver  contains also an  e lec t romagnet ic  field due 
to the  signal. I n  the  remain ing  f rac t ion  ~ of  the  trials,  the  signal field 
is absent .  I n  each tr ial  the  observer  measures  the  to ta l  field in the  
cav i ty  as bes t  he can, and  on the  basis of  his resul ts  he decides be tween  
one of  two hypotheses ,  (H0) ' the  cav i ty  contains  only  t he rma l  radia-  
t ion '  and  (H1) ' the  cav i ty  contains  also a field due to the  signal ' .  
Because of the  r a n d o m  na tu re  of  the  t he rma l  radiat ion,  some of  these  
decisions will be in error,  and  the  de tec tab i l i ty  of  this signal is specified 
b y  the  m i n i m u m  possible average  p robab i l i t y  of  error,  which will be  a 
funct ion of  the  energy  in the  signal, the  t e m p e r a t u r e  T of  the  cavi ty ,  
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the prior probabilities ~ and (1 - ~) of H0 and H1, and, perhaps, other 
parameters of the signal and the background radiation. 

Classically the total field can be measured completely, and prob- 
ability density functions can be written for the field variables at an 
arbitrarily large number of points under both hypotheses. Conven- 
tional detection theory, based on the theory of statistical decisions, 
presupposes this classical description. When the quantum-mechanical 
character of the field must be taken into account, however, as at 
optical frequencies, this approach fails. The present paper will show 
how the theory can be reformulated to embody the quantum- 
mechanical limitations on measurement. 

The most elementary situation of a coherent signal field will be 
treated first from a classical standpoint. Then we shall describe how 
the thought experiment can be carried out in the framework of 
quantum mechanics. The results that  have been obtained thus far will 
be summarized. Finally, detection of a coherent signal of unknown 
phase, which is more realistic at optical frequencies, will be analyzed. 

2. The Classical Limitations on Detectability 

For simplicity we shall describe the electromagnetic field in the 
cavity by  a scalar function ~(r, t) satisfying the wave equation with 
appropriate boundary conditions at the walls. I t  will be apparent that  
a vector field can be similarly treated; the results will be the same, the 
mathematics only somewhat more cumbersome. We express the field 
in terms of normal modes u~(r), which are solutions of the scalar 
Helmholtz equation, 

~(r,t) = • qn(t)u.(r) (2.1) 
n 

The rate of change of the field specifies the conjugate field variable 

a(p rr(r, t) = Z/0n(t) Un(r) (2.2) 
a t - -  

The functions qn(t) and p~(t) are harmonic functions of the time. In  
terms of these functions the energy of the field is given by  

H= l f [=2 + (Vv)~]d~r= ~ Z (pJ  + . , JqJ)  (2.3/ 

where ~% is the angular frequency of the nth mode. The integral is 
taken over the volume of the cavity, and with respect to this integra- 
tion, the mode functions u~(r) are orthonormal. The variables q~ and 
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p~ can be thought of as the coordinate and momentum of a harmonic 
oscillator of frequency ~%.t 

When the cavity is in thermal equilibrium at absolute temperature 
T, the mode coordinates q~ and their conjugate momenta p~ become 
random variables with mean values zero and variances given by the 
law of equipartition of energy, 

�89 Varp~ = �89 2 Var q~ = kT/2 (2"4) 

where k is Boitzmann's constant. The joint probability density 
functions of these variables for an arbitrary finite subset of oscillators 
is given by the entropy principle in the Gaussian form (Chandrasekhar, 
1943) 

-1 

L J 
(2.5) 

where the constant M normalizes the density function so that  its 
integral over the infinite ranges of all the variables equals 1. 

When a signal is present (hypothesis H1), the variables Pn and qn 
will at any instant of time have mean values P~ and Q~ that  are the 
momenta and coordinates of the signal field itself, and their joint 
probability density function is 

E( o- + Qo) Jt PI((P~,q~}) (2.6) 
n ] 

with the same normalization constant (Chandrasekhar, 1943). 
The task of the observer can be regarded as one of deciding which 

of the probability density functions Po({P,,q~}) or Pl({P,,q~}) pro- 
vides the better description of the field in the cavity. According to 
statistical decision theory, the minimum average probability of error 
in these decisions is attained when the decisions are made on the basis 
of the likelihood ratio (Helstrom, 1960a; Middleton, 1960) 

A({p~, q.}) - PI({P~, q.}) 
P0({p ,q2) 

= exp ((kT) -1 ~ [(P~p~ § ~o~2Q~q~) (2.7) 

1 2 ) 2Q j)] 

This likelihood ratio is compared with a decision level )t = ~/(1 - ~), 
where ~ is the prior probability of the hypothesis H0. I f  the likelihood 

t See, for instance, Wentzel, G. (1949). Quantum Theory of Fields, Chapter I. 
Interscience Publishers, Inc., New York. 
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ratio exceeds the level/%, the observer decides that  a signal is present. 
Since In A is a Gaussian random variable, it is not hard to show that  
the minimum probability of error is given by 

Pe, min= ~Pr {A > A[Ho} + (1 - g)Pr {/1 < AIH1} 

= ~erfc(�89 + D-11nA) § (1 - ~)erfc(�89 - D-~lnA) (2.8) 
where 

co  

erfcx = (27r)-1/~ .I exp (-t2/2)dt (2.9) 
2~ 

is the error-function integral and 

D = (2EJIcT) ~/2 (2.10) 

is the signal-to-noise ratio, 

E s =  1 E ( p 2  + ~%2Q2) (2.11) 

being the total energy in the signal field. Thus the detectability of the 
signal depends primarily on the ratio of twice the energy in the signal 
to the total average thermal energy per mode,/cT. 

3. The Quantum-Mechanical Detection Problem 

The classical description of the field is valid only when the average 
number of quanta in each oscillator is large under both hypotheses, 
that  is, generally speaking, for angular frequencies oJ~ much lower 
than kT/h, where h = h/2~ is Planck's constant. When the principal 
signal frequencies are higher than kT/h, as in the optical domain, the 
field must be treated by  quantum mechanics. The conjugate variables 
Pn, qn of the field oscillators cannot be measured simultaneously, and 
joint probability density functions of the kind given by  equations 
(2.5) and (2.6) become meaningless. The likelihood ratio cannot be 
written down, and conventional detection theory is inapplicable. The 
problem of how to attain a minimum probabili ty of error on the basis 
of observations of the field in the ideal receiver must be reexamined 
(Helstrom, 1967a). 

Quantum-mechanically the field must be described not in terms of 
probability density functions, but  in terms of density operators P0 and 
Pl pertaining respectively to the absence and the presence of the 
signal. The oscillators are now, under each hypothesis, in a statistical 
mixture of states, and the observer must decide which of the two 
possible mixtures better  fits what measurements he can make of the 
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field. His decisions will sometimes be in error, and it is necessary to 
determine what  are the most effective measurements  to make and 
how best can their  outcomes be processed so tha t  the probabil i ty of 
error will be minimum. The minimum at tainable probabil i ty of error, 
as before, specifies the detectabil i ty of the signal. 

At  most  the observer can measure a set of dynamical  variables of  
the field whose quantum-mechanical  operators X1, X2, X8 . . . .  com- 
mute.  He must  then  form some function f ( x l , x2 ,xa , . . . )  of the out- 
comes Xl, x~, x~, . . .  of these measurements,  and on the basis of the 
value of this function he chooses hypothesis H0 or H1. Equivalent  to 
this is the measurement  simply of the operator II = f (X~,  X2, Xa, . . . ) ,  
and the only values t h a t  the outcome of such a measurement  needs to 
take  are the numbers 0 and  1. I f  measurement  of the operator II yields 
the value 0, hypothesis  H0 is chosen; if  1, H1 is chosen. The operator II 
is therefore a projection operator for the system consisting of the field 
in the ideal receiver. 

The remaining problem is to adopt  the most  effective projection 
operator II, t ha t  is, the one minimising the average probabil i ty of 
error. The probabil i ty of choosing H1 when H0 is true is 

P r ( I I  ]IH0} = E(HIHo) = Tr (pc [i) (3.1) 

where E denotes the expected value, and Tr denotes the trace. The 
probabil i ty of choosing H0 when H1 is true is similarly 

Pr  {H --> 0[H~} = E(1 - H IH1) = 1 - Tr (p~ H) (3.2) 

Thus with ~ again the prior probabil i ty of Ho, the average probabil i ty 
of error is 

P~ = ~Tr (po H) + (1 - ~) [1 - Tr (Pl II)] 

= (1 - [) - (1 - [) Tr (pl - Apo) II (3.3) 

= ~/(1 -- ~) 

The observer should therefore measure the projection operator II for 
which Tr (pl - ~p0) II is maximum.  

By  taking a representation in which pl - ~po is diagonal, it  is not  
hard to show tha t  the projection operator satisfying this requirement 
is given by  (Helstrom, 1967a) 

n = Z 
k :  

"~ >~ 0 

where [W> is the eigenket of the operator p 1 - )tp0 corresponding to the 
eigenvalue ~k, 

(p l  - = w t w >  ( 3 . 5 )  
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The projection operator II projects all state vectors onto the subspace 
spanned by  eigenkets 1%) with positive eigenvalues Vk. The minimum 
probability of error is then given by 

Pe, min=(1-~)(1-- ~0~k) (3.6) 
One can say that  the observer measures the operator p l -  Ap0 and 
chooses hypothesis H1 if the outcome is positive. 

Let the temporal behavior of the system be described by  the unitary 
operator U(t, to), which is determined by  the SchrSdinger equation. 
Then the density operators at time t in terms of those at an earlier 
time t o are 

pk(t) ----- U(t,  to)p/~(to) U+(t, to) (/c = 0, 1), (3.7) 

U(t, to) U+(t, to) = 1 

and the eigenkets I~k(t)} in terms of those at time t o are 

= u ( t ,  to) (3.s) 

The eigenvalues Vk are unchanged, and the detection operator at 
time t is 

II(t) = U(t,  to) II(to) U+(t, to) (3.9) 

in terms of that  at  time to. Hence 

Tr [pl(t) - Ap0(t)] II(t) = Tr [pl(t0) - Ap0(t0)] ]](to) (3.10) 

and the minimum attainable probability of error does not depend on 
when the measurements are made. 

When the density operators p0 and Pl commute, they possess a 
common array of eigenkets I~/k}, and the eigenvalues of pl - AP0 are 

~/k = Plk - AP0k (3.11) 

where P~k is the probability that  the receiver is in the/cth state under 
hypothesis Hj (j = 0, 1). The observer then measures any observable 
having the same set of eigenstates Irk}, and he chooses hypothesis Z-/1 
if the state after the measurement is an eigenket IVy} with 
Vk = P~k -- APok/> 0, that  is, with 

P~k 
P0k >~ A (3.12) 

This is the standard likelihood-ratio test. I f  the operators P0 and pl 
have continuous spectra of eigenvalues, the probabilities Pj~ become 
proportional to probability density functions. Since classically all 



THE DETECTABILITY OF ELECTROMAGNETIC S I G N A L S  43  

densi ty  operators must  commute,  the theory  reduces in the classical 
l imit to the conventional form of detection theory.  

I f  under  hypothesis  H 0 the system is in a pure state I T  o>, and if  
under  hypothesis  H i  it is in a pure state [Ti>, the detection operator 
II is simply a projection on to a linear combination of I To> a n d  ] T I >  

(t teistrom, 1967c), 

n = l~1> = xolTo> § xxlTx> (3.13) 

B y  subst i tut ing such a linear combination into equation (3.5), with 
n o w  

p 0 =  I T o > < T o l ,  p~= ITI><I/JI[ (3 .14 )  

and equat ing coefficients of [To) and [Ti>, one obtains a pair of 
simultaneous equations for x0 and xl, a solution of  which exists only 
when Vk is a root of a certain determinantal  equation. There are two 
roots, no < 0 and V~ > 0, where 

~,  0 = �89 - ; ~ )  •  

R = - + (3 .15 )  

q = 1 --I<To[T~>I ~ 

The minimum probabil i ty of error is 

Pc, rain = (1 - ~)(1 - ~i) = (1 - ~)[�89 -t- A) - R] (3.16) 

For  orthogonal states, q = 1 and P e , r ~ n  = 0, as one would expect. 
These formulas give the probabil i ty of error in deciding between two 
pure quantum-mechanical  states. 

4. Quantum Detection of a Coherent Signal 

Let  us suppose t ha t  the signal excites only a single mode of oscilla- 
t ion of the field in the receiver. The remaining modes can then  be 
disregarded. I f  under  hypothesis  H0 the mode is excited by  thermal  
radiation,  the densi ty operator P0 can be wri t ten in the al ternat ive 
forms (Glauber, 19633; Louisell, 1964a) 

po = (1 -- e -w) exp (-wa+a) = (TrN) -1 f exp (-]~[2/N)I@ @] d2~ (4.1) 

W = ] ~ c o / ~ , T ,  N = (e w - -  1 ) - 1  

where co is the frequency of the mode and N is the average number  of 
thermal  photons as given by  the P lan@ law. In  equation (4.1), a and 
a + are the annihilat ion and creation operators for the mode, obeying 
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the usual commutation rule aa + - a+a -- 1. In terms of them, the 
oscillator coordinate q and its conjugate momentum p are 

q = (h /2w) l /2(a+ + a) 

p = i(h~o/2)1/2(a+ - a) (4.2) 

The second form of p0 in equation (4.1) is Glauber's P-representation 
in terms of the coherent states ]a}, which are the right-eigenkets of 
the annihilation operator (Glauber, 1963a) 

= ( 4 . 3 )  

The quantum-mechanical counterpart of a coherent electro- 
magnetic signal is such a coherent state, say I/~}, where I/~] 2 is the 
average number of signal photons, 

N s  = ] , l  = Es/h., (4.4) 
and arg/~ is the phase of the oscillator (Glauber, 1963a). Such states 
correspond, as Glauber has shown, to minimum-uncertainty 
Gaussian wave-packets. When a coherent signal is superposed on 
thermal radiation (hypothesis H1), the density operator of the mode 
is (Glauber, 1963b; Louisell, 1964b) 

pl = (1 - e  -w) exp [-w(a + - tz*)(a - / z )  

= ( r r N ) - l  f e x p ( - l a - ~ 1 2 / N ) l ~ } @ : l d ~ ' ~  (4.5) 

The problem of diagonalizing the operator pl - 2p0 and calculating the 
minimum probability of error in this case has not been solved in 
general. 

In the absence of thermal radiation, the receiver is in the vacuum 
state 10} under hypothesis Ho and in the coherent state I~} under 
hypothesis H1. The minimum probability of error has been given by  
equation (3.16), with now 

q ~- 1 -I(01/z}[2 = 1 - exp ( - N s ) =  1 - e x p  ( -Es /h~o)  (4.6) 

This probabili ty of error is plotted in Fig. 1 for ~ = 1 as the line 
marked 'optimum'. 

When,  on the other hand, the average number of N of thermal 
photons in the mode is very large, an approximate solution illustrating 
the classical limit can be obtained. For simplicity we take the phase 
of the coherent signal as arg/~ = 0,/z is real, and in the representation 
in which the operator 

-~ q(oJ/2h) 1/2 --  �89 -k a +) (4.7) 
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is diagonal, equation (3.5) becomes the integral equation 

/ [<~[Pl[~'> - A<~lPo]~'} ]Fk(~')d~' = wFk(~) (4.8) 
- - o 0  

F ~ ( ~ )  = <~lvk> 
where 

[ 2 ]1/2 r (~+~')2 �89 + 1) (~ _ ~:,)2] 
<~lPo]~'>= ~(~2N)]  exp[. 2(21v+ 1) 

<~[pl[~'> = exp [2~($ + ~' - ~) / (2N + 1)3 <~]Po]~'> (4.9) 

Hence, in the limit N - +  o9 of a large average number of thermal 
photons, Po and pz are nearly diagonal in the ~-~epresentation, and 

,6' 

t~ ,.t 
162 

16: 

1 6 " ~  
0 I 2 3 4 5 6 7 

AVERAGE NUMBER Ns OF SIGNAL PHOTONS 

Figure  1 . - -Ti le  m i n i m u m  average probabi l i ty  of detect ion of a coherent  signal 
in the  absence of background radia t ion  (~ = ~). 

both <~[p01~'> and (~=IPlI~'} a re  proportional to 8 (~-~ ' ) .  In the 
classical limit, therefore, when arg/~ = 0, the best operator to measure 
is ~ or q, and this accords with the prescription of conventional 
detection theory as described by Section 2, where Pk is now equal to 0. 

The observer may base his decision on the outcome of a measure- 
ment of~ or q, choosing H1 when a certain decision level ~0 is exceeded. 
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The probability density function of the outcome ~ of a measurement 
of ~ is, by equation (4.9), Gaussian under each hypothesis (Louisell, 
1964b), 

li] exp[ (4.10) 

The decision level ~o is again determined by the likelihood-ratio 
criterion, 

Pl(~o) ~ _  ~ (4.11) 
P0(~0) 1 - 

and the probability of error is found to be given by equation (2.8), 
except that  the signal-to-noise ratio D is now given by (Helstrom, 
1965) 

D 2= 4/z~ --4Es / | l~~ 
2N q- 1 hw tanh (4.12) 

In  the limit ?~o~ ~ kT,  this reduces to the signal-to-noise ratio in 
equation (2.10). This 'classical' detector has a higher probability of 
error than  the minimum attainable. 

In  the limit N = 0, in particular, the probability of error given by 
equation (2.8) with equation (4.12) is greater than that  given by 
equation (3.16) with equation (4.6). The two are compared in Fig. 1 
as the lines 'opt imum' and 'classical', both plotted for a prior 
probability ~ = �89 

In  addition, Fig. 1 shows the probability of error of a system that  
merely counts the number of photons in the mode, in effect disregard- 
ing the phase information about the signal. I t  decides a signal is 
present whenever any photons at all are counted. The probability of 
error is then 

Pe,  counter = (1 --  ~ ) e x p  (-~Vs) (4 .13)  

which is plotted for ~ -- �89 as the line marked 'counter'. 
When the signal is present in many modes of the field, what 

corresponds to classical detection is the measurement of the operator 
(ttelstrom, 1965) 

Z (l~k * ak + t%ak+)l(2Nk -t- 1) 
k 

where [t~k] 2 is the mean number of signal photons in the kth mode, 
and Nk is the mean number of thermal photons in that  mode. The 
probability of error is again given by equation (2.8), and when the 
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signal occupies so narrow a band of frequencies that  the Nk's can be 
taken equal, the effective signal-to-noise ratio D is again that  given 
by  equation (4.12). All three curves in Fig. 1 are valid for such a 
narrowband coherent multimode signal when thermal radiation is 
absent (N = 0) and ~ = �89 For N not equal to zero, the optimum 
detection operator II has not been determined. 

5. The Detection of Coherent Signals of Random Phase 

At optical frequencies the absolute phase of a received signal is 
unlikely to be known to the observer. I t  is, therefore, useful to 
determine the detectability of the signal, as expressed by the mini- 
mum average probability of error, in the least favorable situation 
when the phase ~ of the signal is a random variable distributed 
uniformly over the range 0 ~< ? < 2~. 

How the classical receiver of Section 2 should be modified in order 
to detect a narrowband signal of random phase is described in books 
on signal detection theory, where it is shown that  the minimum 
average probability of error attainable by such a receiver is (Helstrom, 
1960b) 

P~,mi, = ~ exp (-b2/2) + (1 - ~)[1 - Q(D,b)] (5.1) 
Here 

co 

b) = f xexp [-�89 2 + D~)]Io(Dx) dx (5.2) Q(D, 
b 

is Marcum's Q-function, b is a normalised decision level given by  the 
likelihood-ratio equation 

A = ~/(1 - ~)= exp (-D2/2)Io (Oh) (5.3) 

and D = (2Es/kT) 1/~ is the same signal-to-noise ratio as before. We 
now turn to the quantum-mechanical problem. 

Under hypothesis Ho, the quantum-mechanical density operator 
of the receiver will be given, in thermal equilibrium, by the multimode 
counterpart of equation (4.1), 

N = [exp (?ioJkllcT) -- 1] -1 

where I{~k}) is a simultaneous right-eigenket of the annihilation 
operators a k of the modes, and N k is the mean number of thermal 
photons in the kth mode. When a signal of overall phase ~ is present, 

4 
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having mean complex amplitude /z~(~o)--/zke~ in the mode k, the 
density operator is 

pl(~) = f"" f exp[-E ]~,-~,(~)[~/N,] E{~k}} ({~k}l ~ (d'~k/~Nk) 
(5.5) 

Here ]/~k] 2 is the mean number of signal photons in mode k, and the 
phases arg/~ k are assumed known. The density operator under 
hypothesis H1 is now the average of Pl(cP) over the common unknown 
phase ~, 

2~r 

P1 ~- f Pi(q~)cl~/2~ (5.6) 
0 

Under the assumption that  the signal occupies only a narrow band 
of frequencies, the numbers zY k are nearly equal for all modes in which 
the amplitudes [/zk[ differ significantly from zero, N k - N .  The 
remaining modes can be disregarded. At any point of time, one can 
introduce a new set of mode operators b~, bk + by  a unitary trans- 
formation (Helstrom, 1967b), 

bk = E Vkmam 
m 

bk + = Y~ Vkm* am + = ~ am+(V+)mk (5.7) 

V--llVkAI, VV + = I  

where I is the identity matrix. The bk's, bk+'s obey the same commuta- 
tion rules as the a~'s, a~+'s. The right eigenkets I{fi~}}, defined by  

b~[ {~m}} = ~1 {~m}~ (5.s) 
have the same properties as the coherent states [{an)), and can be 
used to express the density operators p0 and pl as in equations (5.4) 
to (5.6). In particular, because of the unitarity of the transformation 
V the density operator P0 can be written as 

The unitary transformation V is so chosen that  

Vim = ~y~1/2/zu. ' (V+)ml = _N~ 1/2/z m (5.10) 
where 

Ns = Z ]#k[ 2 (5.11) 
k 
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is the average total number of signal photons in the receiver. The 
remaining rows of the matrix V are orthogonal to the vector {/~k} 

E Vkm~,~ = N ,  1/2 8~k (5.12) 
m 

otherwise they are arbitrary. The density operator under hypothesis 
H1 is then given by  equation (5.6), with now 

x l{13m}} <{~m}I I I  (d2]~l 7rN) (5.13) 

We can therefore treat the decision problem as involving a single 
oscillator whose creation and annihilation operators are bl + and bl. 
The density operators p0 and el factor into an operator depending 
only on bl and bl + and an operator common to Pc and el. We can 
discard the latter factor without affecting the detectability of the 
signal. After we average pl(~s) over the unknown phase ~, we find 

a trace having been taken with respect to the states of the remaining 
oscillators. As the P-representations of both p0 and pl involve only 
Iflll, they are simultaneously diagonal in the number representation 
based on the operator n = bl+bl.  The optimum detector will therefore 
measure the operator 

In the n-representation the diagonal matrix elements of the density 
operators are (Laths, 1965) 

Po,~ = N m t ( N  + 1) ~+~ 

N ~ N~ 
PI~ N +  1 N +  + 

where L~n(X) is the ruth Laguerre polynomial. The receiver decides 
that  a signal is present whenever it counts a number m of photons for 
which 

Pore -- exp N~ _ N~ . ~ (5.17) 

Let no be the least integer for which this is true. Then the minimum 
probability of error is 

no-- 1 

P~,m~n=~ ~ P o ~ + ( 1 - C )  E PI~ (5.18) 
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The  first t e r m  of this  equa t ion  is ~[_N/(N § 1)]n~ for the  second there  
is no concise expression.  I n  the  l imit  N = 0 (~ = �89 one obta ins  the  
m i n i m u m  p robab i l i t y  of  error  p lo t t ed  in Fig. 1 as the  line m a r k e d  
' coun te r '  and  g iven b y  equa t ion  (4.13). 

W h e n  the  expec ted  n u m b e r  of  pho tons  under  hypothes i s  H I  is 
large, the  d is t r ibu t ion  Plm can, b y  using a s y m p t o t i c  forms of  the  
Lague r r e  funct ions,  be  wr i t t en  a p p r o x i m a t e l y  as 

P~m % N-1  exp  [ - (m  + Ns) /N]Io[2~/ (Nsm) /N]  (5.19) 

and  P0m ~ N - l e x p  (-re~N). The  m i n i m u m  probab i l i ty  of  error  is now 
given b y  equa t ion  (5.1), wi th  the  signal-to-noise ra t io  D = (2lYe/N)1/~, 
which in the  classical l imi t  becomes,  b y  the  P l anck  formula ,  
D = (2EJI~T) ~/~. B y  these  resul ts  the  de tec tab i l i ty  of  a n a r r o w b a n d  
signal of  r a n d o m  phase  is comple te ly  specified quan tum-mechan i ca l l y  
as well as classically. 
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